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Abstract 

The necessary and sufficient conditions are given that a space-time admitting a group of 
conformal motions can be mapped conformally on a space-time admitting the same group 
but of Killing symmetries. 

1. Introduction 

Tile possible relevance of space-times admitt ing conformal Killing symmetries 
has been emphasized concerning the large-scale structure of  the universe (see, 
e.g., Geroch, 1969; Hawking and Ellis, 1973; Katzin et al., 1969), twistor theory 
(Dighton, 1975), and solutions of  Einstein's equations with matter  (Singh and 
Abdussattar ,  1974). However, the group structure of  conformal Killing fietds 
has not been investigated in every respect,  although in some cases it is supposed 
that the space-time admits a group of  conformal motions. The present paper 
deals with the rescaling problem of  Riemannian manifolds admit t ing such 
groups. 

I f  a contravariant vector field K a of a simply connected Riemannian mani- 
fold Vn satisfies the conformal Kilting equation 1 

Ka;b + Kb;a + kgab = 0 ( t . i )  

then, adopting a coordinate system such that  K a = fil a, (I . I ) l eads  to  

gab, 1 + kgab = 0  

which can be integrated to give 

gab = exp [-- f k dxl ]g(a° a) 

where g(O! 1 _(o) for = 0; thus the gab can be conformally rescaled to yield a gab 
which K a is a Killing vector. Conversely, if K a is a Killing vector for some ga (°) 

g(O!rKr + g(a°)Kr b + g(O)Kr, a =O 

1 The comma and the semicolon stand for partial and covariant derivatives, respectively. 
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then for a gab conformal to g~O) 

ga~ = g (°) e-~ 

we regain equation (1 . i )  with k = Kr~o r" 
If, however, Vn -admits a group GK ~)f conformal motions with generators 

K~ a (a = 1 ,2  . . . . .  ~), then in general one cannot rescale gab in such a way that 
for the resulting metric tensor all the vectors K a be Killing fields. 

In the following section we prove a theorem showing that for simply transi- 
tive groups such rescaling is always possible, whereas the theorem proved in 
the third part gives the necessary and sufficient conditions for the existence 
of  such a conformal transform in the case of  nonsimply transitive groups. In 
the fourth section some corollories of  these theorems are investigated. 

2. Simply Transitive Groups 

We consider the case when Vn admits a simply transitive group GK of con- 
formal motions with generators K a .  We have 

Kaa;b + Kc~b;a + kagab = 0 (2.1) 

[Ka, K~] a =- K~rKfia;r - K~Kaa ;r = Cc~pKpa 2 (2.2) 

c~ep = -ce~p (2.3) 

(a,/3, p = 1, 2 . . . .  , •) the C~.r's being the structure constants of  G K. Simple 
transitivity means that the rank of  the matrix formed by the Ka ' s  is ~. As a 
consequence o f  the integrability conditions of  (2.1)we have (Eisenhart, 1966) 

gaa;bc  = RaberK r + ½ (ka, agbc -- ks,  bgac - ka, egab) (2.4) 

Taking the covariant derivative of  (2.2) with respect to X b, symmetrizing in 
a and b, and making use of  (2.1) and (2.4), we get 

K~rk~, r - K~k,~,r = C,~p kp (2.5) 

Now we prove the following theorem: 

Theorem 1. There exists a scalar ~p such that 

ks  = K [ ~ , r  (~  = 1, 2 . . . . .  K) 

Proof. Define 

L ~ = K d  ( . = 1 , 2  . . . . .  n) 

L ~  +1 = - k ~  

Introducing an additional variable X n+a for which K~ a,n+t = ~ , n + l  = 0 it is 
seen that equations (2.2) and (2.5) can be summarized 

L V L  a v a { j , ~ - L ~ L , ~ , r = C ~ p L p  a (&~-- 1 ,2  . . . . .  n + l )  (2.6) 

2 There is a s u m m a t i o n  for Greek indices occurring twice in an expression. 
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These are the conditions that 

L c f  g~, "~ =--K, f q2 r - ka '~ ,  n + l = 0 (2.7) 

be a complete Jacobian system. In consequence of the simple transitivity of 
GK the :number of  the independent solutions of  (2.7) is n + 1 - ~, whereas 
that of  the solutions of  

Kcf~, r = 0 (2.8) 

is n - K. Since any • satisfying (2.8) is a solution of  (2.7) too, there must 
exist a ~(o) such that 

Ljq~(°) ,f  = 0 (2.9) 

and qAo), n+x 4= 0; otherwise the number of  the independent functions satis- 
fying (2.7) would be equal to that of  the functions fulfilling (2.8). Hence any 
solution of (2.7) is of  the form 

= 'IJ (~a . . . . .  q5 n -  g, ~(o)) (2.10) 

where ~1, .. q~n- ~ are the solutions of  (2.8). Differentiating (2.7) with respect 
to X n+l we have 

L j q d ,  n + l , r  = 0 

showing that if ,I~ satisfies (2.7) then so does xI',n+ 1. Hence for qA0) in (2.9) 
we have, in view of  (2.10), 

xI.t(0),n+l = X(~Pl . . . . .  d£~ n _  n, xI -'(0)-) ( 2 . t  1)  

Now since the function 

~ = f l d q A  °) (2.12) 

is again of  the form (2.10), it satisfies (2.7), and in consequence of  (2.1 I ) a n d  
(2.12) we have 

99, n+1 - x])'(O),n+l = 1 3qA o) 

Hence we have 

QED. 
If  we define 

Lo~ ~ , ~  = K ~  ~ , r  - k s  = 0 (2.13) 

g a ( ° )  = ~ e 'P (2.14) b 6ab  

we have in consequence of  (2 .1)and (2.13) 

g o) r + g o K: + = o 
b,r*~c~ , b ,a  

showing that the rescaling (2.14) yields a ,,(o) tbr which at1 the vectors Kc, a e, ab 
are Killing symmetries. 
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3. Nonsimply Transitive Groups 

If GK of the previous section is not simply transitive, meaning that the rank 
of the matrix of  the K~a's is less than K, say n - ~., then there exists a set of 
linearly independent functions UAp such that 

UApKpa=O ( A = 1 , 2  . . . . .  ) ~ <  K ; p =  1 , 2 , . . . , K )  ( 3 . 1 )  

and these equations must be appended to (2.1)-(2.5). By means of, e.g., 
Schmidt's orthogonalization 

uAp ~ o  = ~AB (3.2) 
can be achieved. 

In consequence of (2. t)  and (3.1) we have 

UAp,bKpa + UAp,aKpb -- UApkpgab = 0 

yielding 
r -- 1 Kp UAn,r - ~n UApkp (3.3) 

Using (2.2) one gets for the Lie bracket of (3. i)  and K J  

(K~rU~,r + UAoC~)Kpa  -- 0 

which must be a consequence of (3.1); thus there exist functions D~AB such 
that 3 

KarUA[Lr = UApCpa ~ + D~A R URfl (3.4) 

According to (3.1) we have 

UAp U.oCoo~ + Ua~DoAR O~ = 0 

which in view of (2.3) and (3.2) yields 

URoDpRA = 0 (3.5) 

From (3.2) and (3.4) we also have 

D,~AB + D,~a4 = UAp UBo (C~po + C,~op) (3.6) 

According to (3.4) we get from (3.3) 

l n UApk p = UApCpa a + URpDpAR 

which can be rewritten using (3.5) and (3.6) 

UApk o = (2/.)UAp(6Uv -- URvURv)Co#v (3.7) 

3 There is a summat ion  for capital Latin indices occurring twice in an  expression.  
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Now we prove the following theorem: 

Theorem 2. The necessary and sufficient conditions that a scalar ~0 
exist such that 

ka = Kcf~,r  

are that the quantities 

UAoko =(2/n)UAp(6uv -- URuURv)Couv (A = 1,2 . . . .  , X <  ~:) 

vanish. 

Proof. Suppose first that 

UApk o = 0 (3.8) 

Defining again La a (~ = 1 , 2 , . . . ,  n + t ) ,  as was done in the proof  o f  Theorem 
1 of  Section 2, we get (2.6) again, these being the conditions that 

Lcf~I',~ ~ Kc~r~,r  -- k c x ~ , n + l  = 0 ( 3 . 9 )  

form a complete Jacobian system. However, in view of (3 .1 )  and (3.8) now we 
have 

UApLp a = 0 (~ = 1 , 2 , . . . ,  n + 1) 

showing that the number of  independent equations of  (3.9) is K - X, and in 
consequence o f  (3.1) the same applies also for the system 

Kardp, r = 0 (3.10) 

Hence the number of  the independent solutions of  (3.9) is n + 1 - (K - X), 
whereas that of  the solutions o f  (3.10) is n - (K - X). From this point we 
follow the proof  o f  Theorem I o f  Section 2 to conclude that there exists a 
scalar ¢ that satisfies 

Kc[~,r - ks = 0 (3.11) 

Conversely, in view of  (3.1), equations (3.11) lead to (3.8). QED. 

4. Conclusions 

From (3.7) it is seen that if the structure constants C ~ v  are antisymmetric 
in the last two indices then a rescaling that reduces the conformal problem to a 
Killing problem is always possible, hence in consequence o f  Theorems 1 and 2 
and (3.7) we have the following: 

Corollary A. If  a space-time V4 with a metric tensor gab admits a 
group SO(3) of  conformal moti'ons then there exists a space-time 
V4 (°) with g(O) such that 

ga(o) 
b = gab e~° 

and V4 (°) admits a group SO(3) of  Killing symmetries. 
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Proof  If  the group SO(3) is simply transitive then apply Theorem 1 ; if not 
then consider the structure constants o f  S0(3):  

G ~  = - e ~  (~, ~, ~ = 1 ,2 ,  3) 

As these are antisymmetric in the last two indices, we have according to (3.7) 

UA~kp = 0 

and now Theorem 2 applies. QED. 
Consider now the group SO(4): 

[Kc~,K(s]a = - e ~ p K p a  

[K~,K~ + 3la = -ec~¢pKp + 3a 

[K~+3,K#+3]a = -ea~pKpa (~, j3, p = 1, 2, 3) (4.1) 

It can easily be seen from (4 . t )  that the structure constants o f  SO(4) are anti- 
symmetric in the last two indices, hence in view of  (3.7) and Theorem 2 we have 
the following: 

Corollary B. I f  a space-time I14 with gab admits a group SO(4) of  con- 
formal mot ions-be ing  necessarily nonsimpty t ransi t ive- then there 
exists a space-time V4 (°) with g(~ such that  

g(O)= gabe~O 

and V4 (°) admits a group SO(4) of  Killing symmetries. 

As is welt known, a space-time V4 (°) admitting a group SO(4) of  Killing sym- 
metries is of  the Robertson-Walker type and its metric tensor ga(°) can be given 
the form 

g(O) =a,  ~(o) = - a ,  g(2 °) = - a  s in/x I oo t~ll 

g(3 O) = --a sin2x 1 sin2x 2, g}O) = 0 (i =/: k) 

where a,i  = 0 (i = l ,  2, 3). From these it is seen that for V4 (°) T a = 6o a is a 
conformal Killing vector.--Since conformal spaces have the same set of  con- 
formal Killing vectors in consequence of Corollary B, we have the following: 

Corollary C t f  a space-time admits a group SO(4) o f  conformal 
motions then it admits a timelike conformal motion too. 
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